

UNIFIED INTERNATIONAL MATHEMATICS OLYMPIAD (UPDATED)

CLASS - 7

Question Paper Code: UM9274

KEY

1	2	3	4	5	6	7	8	9	10
В	D	С	С	С	D	D	В	В	В
11	12	13	14	15	16	17	18	19	20
D	С	D	D	D	Α	В	В	Α	С
21	22	23	24	25	26	27	28	29	30
D	Α	В	Α	В	В	В	С	D	В
31	32	33	34	35	36	37	38	39	40
A,B,C	A,B,C,D	A,B,D	A,B,C	A,B,D	С	С	С	Α	В
41	42	43	44	45	46	47	48	49	50
С	D	С	Α	С	В	В	В	А	В

EXPLANATIONS

MATHEMATICS - 1 (MCQ)

$$\frac{P}{CP} \times 100 = \frac{CP \text{ of 8 mts thread}}{CP \text{ of 40 mts thread}} \times 100 = 20\%$$

2. (D) Remaining part =
$$1 - \left(\frac{1}{3} + \frac{1}{6}\right) = \frac{1}{2}$$

Average rate % per annum (R)

$$= \left(\frac{1}{3} \times 3\right) + \left(\frac{1}{6} \times 6\right) + \left(\frac{1}{2} \times 8\right) = 6\%$$
S.I = ₹ 600
$$T = 2 \text{ years, } P = ?$$

$$I = \frac{PTR}{100}$$

$$\Rightarrow P = \frac{100 \times I}{TR} = \frac{100 \times 600}{2 \times 6}$$

$$= ₹ 5000$$

website: www.unifiedcouncil.com

3. (C)
$$xy - x - y + 1 = 1$$

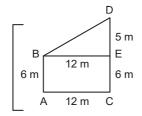
$$y(x-1)-1(x-1)=1$$

$$(y-1)(x-1)=1$$

as x and y are integers, x - 1 and y - 1 are integers.

Hence, x - 1 and y - 1 must both be 1 or -1.

i.e,
$$x = 2$$
, $y = 2$ or $x = 0$, $y = 0$


Hence only 2 integer pairs satisfy the condition x + y = xy

Note: $2 + 2 = 2 \times 2$ and $0 + 0 = 0 \times 0$,

remember $0 \times 0 = 0$ but $0 \div 0$ is not defined.

4. (C)
$$AB = 6 \text{ m}, CD = 11 \text{ m}, AC = 12 \text{ m}$$

Now, DE =
$$(CD - CE) = (11 - 6) m = 5 m$$

In ∆BED,

$$BD^2 = BE^2 + DE^2$$

$$= (12)^2 + (5)^2$$

$$= 144 + 25 = 169$$

∴ Answer is option (C).

5. (C) Distance covered in 1 revolution =

$$\frac{88 \times 1000}{1000}$$
 m = 88 m

$$2\pi R = 8$$

$$\Rightarrow 2 \times \frac{22}{7} \times R = 88$$

$$\Rightarrow$$
 R = $\left(88 \times \frac{7}{44}\right)$ = 14

:. Diameter =
$$2R = (2 \times 14) \text{ m} = 28 \text{ m}$$

6. (D) The arithmetic mean (average) of 3^{10} , 3^{20} and 3^{30} is

$$\frac{3^{10} + 3^{20} + 3^{30}}{3} = \frac{3^{10}}{3} + \frac{3^{20}}{3} + \frac{3^{30}}{3}$$

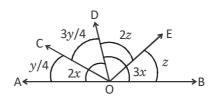
$$= 3^9 + 3^{19} + 3^{29}$$

7. (D) Given
$$\angle AOD + \angle DOB = 180^{\circ}$$

$$2x + 3x = 180^{\circ}$$

$$x = 36^{\circ}$$

Given
$$\angle DOB = 3x$$


$$\Rightarrow \angle DOG + \angle EOB = 3x$$

$$2z + z = 3x$$

$$3z = 3x$$

$$z = x$$

$$x = z = 36^{\circ}$$

Given
$$\angle AOD = 2x$$

$$\Rightarrow \angle AOC + \angle COD = 2x$$
.

$$\frac{y}{4} + \frac{3y}{4} = 2x$$

$$y = 2x$$

$$\therefore \angle COE = \angle COD + \angle DOE = \frac{3y}{4} + 2z = \frac{3}{4}(2x) + 2x$$

$$=\frac{3x}{2}+2x=\frac{7x}{2}$$

$$=\frac{7\times36^{\circ}}{2}=126^{\circ}$$

8. (B)
$$\frac{25}{19} = 1 + \frac{6}{19}$$

$$=1+\frac{1}{\left(\frac{19}{6}\right)}$$

$$\therefore P + \frac{1}{q + \frac{1}{r}} = 1 + \frac{1}{3 + \frac{1}{6}}$$

$$=\frac{\left(\frac{5157}{20}\right)}{\frac{27}{5}} = \frac{\frac{5157}{5}}{20} \times \frac{5}{27}$$

$$\therefore$$
 Cost of $3\frac{3}{4}$ litres

$$=\frac{5157^{191}}{4} \times \frac{1}{27} \times \frac{15}{4} = \frac{2865}{16} = 179\frac{1}{16}$$

10. (B)

Mean =
$$\frac{25 + 26 + +25 + 27 + 30 + 28 + 31 + 27 + 33 + 27 + 29}{11}$$

$$=\frac{308}{11}=28$$

Mode = 27

Mean – Mode = 28 - 27 = 1

11. (D) LHS =
$$\frac{5}{8}$$
 of $\frac{24}{25} \div \left[\frac{5}{3} + \frac{1}{2} \left\{ \frac{3}{4} \div \left(\frac{8}{5} \times \frac{5}{2} \right) - \frac{4}{3} \right\} \right]$

$$= \frac{3}{5} \div \left[\frac{5}{3} + \frac{1}{2} \left\{ \frac{3}{4} \times \frac{1}{4} - \frac{4}{3} \right\} \right]$$

$$= \frac{3}{5} \div \left[\frac{5}{3} + \frac{1}{2} \left\{ \frac{9 - 64}{48} \right\} \right]$$

$$=\frac{3}{5} \div \left[\frac{5}{3} - \frac{55}{96}\right]$$

$$=\frac{3}{5} \div \left\lceil \frac{160-55}{96} \right\rceil$$

$$=\frac{3}{5}\times\frac{96}{105}$$

$$=\frac{96}{175}$$

12. (C)
$$(-1)^{2023} + (-1)^{2024} = -1 + 1 = 0$$

13. (D) Given
$$4x - 7 = 2x + 5$$

$$2x = 12$$

$$x = 6$$

$$\therefore$$
 2x + 5 = 2(6) + 5 = 12 + 5 = 17 cm

14. (D) Given
$$x + 3x = 90^{\circ}$$

$$4x = 90^{\circ}$$

$$x = \frac{90^{\circ}}{4} = 22.5$$

$$3x = 67.5^{\circ}$$

15. (D)
$$4^{\left(\frac{4x+1}{2}\right)\frac{1}{3}} = 2^{-5}$$

$$2^{2\left(\frac{4x+1}{6}\right)}=2^{-5}$$

$$\frac{4x+1}{3} = -5$$

$$4x + 1 = -15$$

$$4x = -16$$

$$x = -4$$

16. (A) Δ PQR is equilateral.

∴ Each of its angles is 60°

$$x = 60^{\circ} + 60^{\circ} = 120^{\circ}$$

In
$$\triangle$$
PRS, PR = RS

$$\Rightarrow x + y + y = 180^{\circ}$$

$$120^{\circ} + 2y = 180^{\circ}$$

$$\Rightarrow y = \frac{180^{\circ} - 120^{\circ}}{2} = 30^{\circ}$$

17. (B) Required simplified value

$$=\frac{2}{3}ab-\frac{5}{7}bc-\frac{2ac}{3}-\frac{3}{2}bc+\frac{3}{5}ab+\frac{5}{2}ca$$

$$= \left(\frac{2}{3}ab + \frac{3}{5}ab\right) + \left(-\frac{5}{7}bc - \frac{3}{2}bc\right) + \left(-\frac{2ac}{3} + \frac{5ca}{2}\right)$$

$$= \left(\frac{10ab + 9ab}{15}\right) + \left(\frac{-10bc - 21bc}{14}\right) + \left(\frac{-4ac + 15ac}{6}\right)$$

$$\left(\frac{19ab}{15} - \frac{31bc}{14} + \frac{11ca}{6}\right)$$

18. (B) LHS =
$$\frac{0.000064 - 0.000027}{0.0016 + 0.0012 + 0.0009}$$

$$=\frac{0.000037}{0.0037}=0.01$$

19. (A) Given $PR||BC \Rightarrow \angle B = \angle BDP = 74^{\circ}$

[:: Alternative angles]

Given AB||PQ

i.e., DB||PQ
$$\Rightarrow \angle$$
BDP + \angle P = 180°

$$74 + \angle P = 180^{\circ}$$

$$\angle P = 180^{\circ} - 74^{\circ} = 106^{\circ}$$

20. (C) In $\triangle ABC$, $\angle A + \angle B + \angle C = 180^{\circ}$

$$\Rightarrow$$
 3 \angle C + 2 \angle C + \angle C = 180

$$\angle C = \frac{180^{\circ}}{6} = 30^{\circ}$$

21. (D) Side of square = $\frac{48 \text{ cm}}{4}$ = 12 cm

Area of square = a^2 = $(12 \text{ cm})^2$ = 144 cm²

Given
$$\frac{1}{2} \times 2x \times 48 \text{ cm}^2 = 144 \text{ cm}^2$$

$$x = \frac{144 \text{ cm}^2}{48 \text{ cm}} = 3 \text{ cm}$$

22. (A) New radius (R) = 3r

New circumference

$$= 2\pi R = 2\pi(3r) = 3(2\pi r) = 3c$$

23. (B) Let the number to be multiplied be x

$$\therefore \left(\frac{7}{3}\right)^{-2} x = \left(\frac{5}{3}\right)^{-3}$$

$$\Rightarrow \left(\frac{3}{7}\right)^2 x = \left(\frac{3}{5}\right)^3$$

$$\frac{9}{49}x = \frac{27}{125}$$

$$x = \frac{27^3}{125} \times \frac{49}{9_1}$$

$$=\frac{147}{125}$$

24. (A) $\angle D = \angle E$ [: Corresponding angles]

$$\therefore$$
 $\angle D = x = 47^{\circ}$

In
$$\triangle$$
ACD, $y + x + 108^{\circ} = 180^{\circ}$

$$y + 47^{\circ} + 108^{\circ} = 180^{\circ}$$

$$y = 180^{\circ} - 155^{\circ} = 25^{\circ}$$

25. (B)
$$2^{3^{64}} = 2^{3^{2 \times 32}} = 2^{(3^2)^{32}} = 2^{9^{32}}$$

26. (B) Let the first part be $\not\in x$

$$\therefore$$
 second part = \neq (45000 – x)

Given $10\% \notin x = 5\%$ of $\notin (45,000 - x)$

$$\Rightarrow \frac{\cancel{10}^2}{\cancel{100}} \times \cancel{\xi} x = \frac{\cancel{5}}{\cancel{100}} \times \cancel{\xi} (45000 - x)$$

$$2x + x = 345000$$

$$3x = 745000$$

$$x = \frac{\text{₹45000}}{\text{3}} = \text{₹15,000}$$

∴ Bigger part = ₹ (45000 – x) = ₹ 30,000

27. (B) Let x & y are supplimentary angles

Given
$$y = 3x$$

But
$$x + y = 180^{\circ}$$

$$x + 3x = 180^{\circ}$$

$$4x = 180^{\circ}$$

$$x = \frac{180^{\circ}}{4} = 45^{\circ}$$

$$y = 3x = 3 \times 45^{\circ} = 135^{\circ}$$

28. (C) Given CD || AB $\Rightarrow \angle$ DCE = \angle B = 60°

In
$$\triangle$$
ABC, 55° + 60° + \angle ACB = 180°

$$\angle$$
ACB = 180° - 115° = 65°

29. (D) Sum of other two angles

$$= 180^{\circ} - 73^{\circ} = 107^{\circ}$$

30. (B) LCM of 3, 4, 6, 12 and 24 is 24

$$\therefore -\frac{5}{6} = \frac{-20}{24}, -\frac{3}{4} = -\frac{18}{24}, -\frac{2}{3} = -\frac{16}{24}, -\frac{17}{12} = -\frac{14}{24}$$

$$\therefore -\frac{14}{24} > -\frac{16}{24} > -\frac{18}{24} > -\frac{19}{24} > -\frac{20}{24}$$

i.e.,
$$-\frac{7}{12} > -\frac{2}{3} > -\frac{3}{4} > -\frac{19}{24} > -\frac{5}{6}$$

website: www.unifiedcouncil.com

MATHEMATICS - 2 (MAQ)

- 31. (A, B, C) Let the smallest angle be x'
 - \therefore Sum of other two angles = 180 x

Given
$$x = \frac{1}{5} (180^{\circ} - x)$$

$$5x = 180^{\circ} - x$$

$$5x + x = 180^{\circ}$$

$$6x = 180^{\circ}$$

smallest angle
$$(x) = \frac{180^{\circ}}{6} = 30^{\circ}$$

Required angles of a triangle are 30°, 45°, 105°; 30°, 65°, 85°; 30°, 50°, 100°

32. (A, B, C, D)

Option (A) :
$$\left(y^{\frac{2}{3}}\right)^9 = y^{\frac{2}{3} \times 9} = y^6$$

Option (B):
$$\left[\left(y^6 \right)^{\frac{1}{2}} \right]^2 = y^{6 \times \frac{1}{2} \times 2} = y^6$$

Option (C):
$$\left(y^{\frac{1}{3}}\right)^{18} = y^{\frac{1}{3} \times 18} = y^6$$

Option (D):
$$\frac{y^{18} \times y^{\frac{1}{2}}}{\left(y^{\frac{25}{2}}\right)} = y^{18} \times y^{\frac{1}{2} - \frac{25}{2}} = y^6$$

33. (A, B, D)
$$\frac{1}{3} = 0.33, \frac{1}{4} = 0.25$$

 $\frac{7}{24}$ = 0.29 lies between 0.25 and 0.33.

 $\frac{13}{48}$ = 0.27 lies between 0.25 and 0.33.

 $\frac{8}{15} = 0.53$ doesn't lie between 0.25 and 0.33

 $\frac{5}{18}$ = 0.27 lie between 0.25 and 0.33.

- 34. (A, B, C) A parallelogram has no line symmetry
- 35. (A, B, D) Option (A) is true of SAS congruency.

 Option (B) is true for ASA congruency.

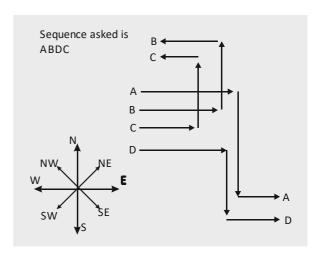
 Option (D) is true because SAS congruency.

REASONING

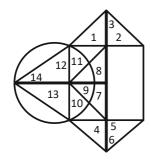
36. (C)

37. (C) $6^3 = 216$

$$15^2 = 225$$


38. (C)

39. (A)


40. (B) East, West, West, East

- 41. (C) Except is option (C) remaining options two letters are missing between in the letter series.
- 42. (D) First letter represent black circle and second letter represent white circles.

website: www.unifiedcouncil.com

43. (C)

44. (A)

45. (C)

Dictionary order is 2, 1, 4, 5, 3

CRITICAL THINKING

46. (B) Hence, number of people having one bicycle and 3 bicycle are equal. So, 29 families could be divided as

$$29 = 10 + 10 + 9$$

$$29 = 14 + 14 + 1$$

Or other groups as well as

Taking one group for example

$$10 \times 3 + 10 \times 1 + 9 \times 2$$

$$30 + 10 + 18 = 58$$

(OR)

$$14 \times 3 + 14 \times 1 + 1 \times 2$$

$$42 + 14 + 2 = 58$$

it is also possible with their pair.

Hence, 58 is the answer in each case.

- 47. (B) Since in the past the result was declared late by university. It has decided to conduct the examination in March/April in order to announce the result at proper times.
- Figures 1, 2 and 5 will form the square 48. (B) as shown in the following image;

49. (A) The given statements are as follows:

Student A: D tore the book.

Student B: It was not me.

Student C: It was not E.

Student D: A is lying.

Student E: B is telling the truth

Let say A is saying the truth. Then, statement of B, C and E are also true which can't be possible as only three statements are true.

Let say B, D and E are telling the truth, this implies that E has torn the book.

50. (B) Wheel B moves anti-clockwise and slower than speed P (rotation per second).